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ABSTRACT

This paper provides a clarified mathematical frame work for studying the energy dissipated durning the
deformation of Trabecular bone as an example of mineralized tissue. The free energy of the system accounts
for both internal energy and deformation. At any point of the deformation, the material is regarded as elastic.
The free energy of the system account for both strain and energy dissipated. The exploitation of a dissipation
inequality by means provide admissible coupling between stress and energy. Specific admissible constitute
equations are derived. The main result of this work 15 that under pressure but general assumption, the
dynamics of dissipation 1s time regulated by the thermodynamical admissible equation.
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1.0INTRODUCTION

The increase in muscle mass due to elevated loads
apparently has been known for millennia and the
relation between loading and one size has been
1993).
Furthermore, more than 100 years ago, Culman and

recognized for centuries (Ascenzi,

Von Meyer noted a qualitative likeness between the
trabecular architecture with femur and principal
stress trajectoriesin a similarly shaped
crane(Koch,1917). This observation led to Wolff's
law or the trajectorial hypothesis for internal bone
remodeling (Wolff, 1986).

Remodeling involves changesin material properties.
These changes which often are adaptive, may be
brought about by alternation in modules, internal
structure, strength or density.Using a stress analysis
of the femur based on detailed morphological
measurement, Koch (1917) confirmed Wolff's law.
He also discussed possibility of bones being
optimized structures designed for maximum strength
with minimum material. Bone and muscle adaptation,
however are intimately related since they exert force
on each other (Cowin, 1993).
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1.1 STRUCTURE AND
BONES

Macroscopically, there are two types of bones.
Compact or cortical boneand Cancellous or
trabecular bone. Compact bone is a dense material
that makes up primarily the shaft or diaphysis of a
long bone. Cancellous bone isa porous material that
makes up the end or epiphysis of a long bone and is
surrounded by thin shell of compact bone. Since the
trabecular give Cancellous bone a sponge-like
appearance. This type of bone is also called spongy
bone.

Microscopically, there are three types of compact
bone; Woven, Lamellar, and Harversian
(Cowin,1993).Bones contain primarily three types of
cells

MECHANICS OF

1. Osteoblasts, which create (deposit) bone.
2. Osteoclasts, which destroy (resorb) bone.
3. Osteocytes, which are cemented

osteoblasts that become trapped in the bone

matrix and then serve maintenance

functions
In this way, osteoclasts first resorb old bone often by
tunneling and then osteoblast fill in the tunnels with
new bone. The newly deposited bone initially has a
relatively low modulus, with mineralization and
hardening occurring gradually (David and Andrew,
2012), (Hart and Davy,1989). In this way, deposition
occurs without introducing residual stress. Bone
resorption and deposition are ongoing process that
may be regulated by osteoblasts (Majid, 2010).
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Several mechanisms have been proposed for the
transduction of mechanical loads. According to
Mayid (2010).

1. Mechanical fatigue, micro damage
Alterations 1n minerals solubility due to stress
are parts of mechanical changes in bones.
Unlike soft tissues that undergo large
deformation, the case of bone 1s different and
therefore the stress, strain and strain-energy
criteria seem to have the similar mathematical
form. Of these finding non have taken into
account the dissipation of energy during
mechanical loading. The following significant
factors should be considered when developing
mathematical model for dissipation of energy
in bones or mineralized tissue.

1. Dafferent bones have different function and are

subjected to different loads, Thus, they are

likely to respond differently to the same stress

(Khassetarash et al, 2015).

Increase bone mass generally lower stress but

increase the weight that must be borne by

animal.

3. Trabecular bone aligns along the direction of
principal stress 1.e. Wolff's Law (Hayes and
Synder, 1981).

4. Trabecular bone density increases in regions of
higher shear (Hayes and Synder, 1981) and as
the loading rate increases (Khassetarash et al
2015)

k2

2.0 METHODS OF TISSUE DEFORMATION

1.1 BASIC KINEMATICS OF DEFORMED
MINERALIZED TISSUE

Initial configuration

isplacement U

Fig. 1. Shows 1mitial and current configuration

Current configuration
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We denote the reference configuration by B,,
which 1s an arbitrary chosen fixed configuration.
Then, any particle P of B may be labeled by its
position vector X in B,. Let x be a position vector
of P in the current configuration B,. We say that B
occupies the configuration at time t since B, and B,
are configurations of B, there exist a byection
mapping

LB 3B such that

x=7(X)forall XEB, (1)
X=;({l (x) forall X € B,

The mapping 7 1s called the deformation of the
body from B; to B;, since B; 15 time dependent, we
write

x=%X)orX=y" (x) @
Instead of equation (1), we can have
X=y(x tforal XE€B,t€I (3)

For each particle p (with label x) describes the
motion of P with parameter t, and hence the motion
of B. it 15 usual to assume that 7 (X t) 1s twice
continuously differentiable with respect to position
and time.

2.2 THE MATERIAL TIME DERIVATIVE

The velocity v of a particle P 1s defined as

v = i=4 ) @

The acceleration a of P 15
a=v=i=—c(X)

let ¢ be a scalar field defined on By, 1e. ¢, (x. t).
since x= (X, t) we may write

¢ (x. 1) $(x(X. 1), )= 9 Cx1)
Thus any definition on B, (respectively B;) can
through equation (2) or its mverse, equally be
defined on B, (respectively B;).
The material derivative of ¢ is the rate of change of
¢ at fixed material point p 1.e. at fixed X
Thus, by definition, we have ¢ = ui AX,t) using
chain rule for partial derivatives: we have

T D=7 X0 + 55 A0

()

(6)
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= — Ax,0) + 5 Vo(x,1).
Using equation (4), we have

dif(x,t)z ¢ = dif+v. 7
Matenal description spatial description
Simularly for vector field,
Ux, =T (z(U, 1)) =UX 1) (8)

where 1n U defined in equation (8), we obtain
UKD = 0=2-+(V.V)U (9)

In particular the acceleration a = ¥ 1s given by

a=v = ? + (v.V)v

(10)

3.0 APPLICATION OF ENERGY BALANCED
EQUATIONS TO OBTAIN RESULTS IN
DISSIPATION OF ENERGY

3.1 BALANCE EQUATIONS OF MINERALIZED
TISSUES (BONES)

In this section we summarize the balance
equations, in Lagrangian form that must be
satisfied by a dissipation body. Let a matenial point
of the body be labeled by its position vector X 1n
the initial stress — free configuration, denoted B;.
The deformation of the body from By to B, may
then characterized by so-called deformation

gradient F, which is defined by # = j—‘ (11)

3.2 ENERGY BALANCE AND CONSTITUTE
EQUATIONS

From the principle of conservation of
energy,

S(K+E)=W+( (12)

where W is the external force and Q 1s the
mechanical energy that enters the body

In this principle
W= [px,vd + [1,v = [pxuv,d +
8 v (13)
and
Q:fl. phd — J; qmd (14)
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where v 1s the volume and s. the surface.

Here, we regard W as the mechanical rate of work
done on the body of the volume V and the surface
S while equation (14) 1s the total rate of heat input
or non-mechanical power, n 1s the outward unit
normal.

Thus according to (Majid, 2010), the principle
of conservation of energy (12) reduces to

uij; p(%V,l-‘,+ Z)d = [, Py +
Wd + [(a ), — a)n (15)

Considering the first integral on the L H.S. with
vowel identity.

d 1
a—Jl p(iv,v, + E]d

1 L
+ I)]dv + [p (5 Vv, + E] vinjds

| oG

IR

= _"I {%+p ille (%V,l-‘. + E)] + p(vd, +
I)}d

(x5} o Erm 9

=0 for continuity = [ p(v,a, + T)dv =
[ p(vya, + Z)dv
The third integral of the equation (15) can be

converted to a volume integral by the divergence
theorem.

(16)

f("l = qlJ"ld = f("l 'v"u‘d - ‘h,l)d (17

and hence by substituting of equation (16) and (17)
mnto equation (15) 1t follows that

I, {plvia, + = — Xvv —h] -
o vt ‘h.l}d =0

a; ,jVi—

(18)

f" {viloa, — X, — o, ;| +p(Z—h)—a v,;] +

Quid =0,Yn (19)
Since there 15 no motion, we set
(o 1—Xx—p,,;,=0 (20)
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a he o P =ph +a a; — q, (21)

Equation (21) is a local form of conservation of
energy equation.

For convemence and without loss of generality, we
can replace the thermal term 1n equation (21) by

p =ph—q,; (22)
and 6, = —pé, (23)

In the local conservation of energy, so that

P =pvy) + P 24)
For continuity
Vi =—3q 25)
Which reduce equation (20) to
—rd
pL = v TP (26)

Upon setting the specific volume to be V,

= 1/p, then we obtain the first law of
thermodynamics directly from the local
conservation of energy equation
Thus, pX = p —vl, A @7
That 1s,
d¥ = dq — pdv, (28)
pa = ph —qy,
pL=—py, +p
=—pv; +ph—qu (29
ButV.-_i='£:—+ph—q“- (30)
“pE= +§:— +ph—qy, (31)
Defining q;= -k 6 (32)
pz='—::—+ph+(k:— 6o4).1 (33)

From equation (12)
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d . d d ,
d—[k+c]_?+—_w+o

4 (39

For quasi-static approximation of irreversible
processes, and of the thermostatic changes in the
continuous system 1s time independent then,
K.=0 _——
Edt=dE (35)
Wdt= dw

Qdt=d Q

P
Where d denote an inexact differential following
standard argument above, we have

dE=dw + dQ (36)

To convert inexact equation (36) into exact, we use
integrating factor 1/T and write the total
differential as

ds=¢ G7)
When s s the entropy

Using clausius-duhem inequality
Se-Sa2 [y 5 (38)

This 1s an equation of irreversible process from an
equilibrium state A to and ending in an equilibnium
state B. Here we look at some basic assumption
such as;

a) At any point of deformation, the matenial
remains elastic throughout the range of the
deformation.

The matenial 1s assumed to be
homogenous.

The bone structure 1s considered as a
continuous body subjected as a portion of
its boundary dB C B to the chemical
activity generated by osteoclasts, the
biological generated activity leads to an
overall change of mass of the solid,
presented here by only mineral fraction
given by (Emilio et al ,2010)

b)

c)
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“fp =l pd (39)
Were p 1s the apparent density of bone mineral,
which 1s assumed to remain constant during the
resorption process in the remaining ultrastructure
B; V= v.n. with convention, v.n=0 correspond to
dissipation process provided that the only change
in mass of the system result from the molar flux of
the dissolved bone matter.

Having establish above for a resorption process we
prove the Clausius Duhem 1n equality, which state
that the externally supplied work 1s dissipated
dWen, when not stored as free dW 1n the system

dissipated into heat form

d__dWw, _d_

a d d =0 (40)
Proof

We begin with Clausius — Duhem inequality 1n
integral form as follows

ZUgp )2 [pgp Wa—v.mdd —

fo5d (41)
Can be written 1n differential form as
p2-v(5)+(%) )

When 1, =entropy, p = density, g= heat flux, s
energy source, T= temperature

Assuming that ) 1s an arbitrary fixed control

volume, then U, = 0 and the denvative can be

taken inside the integral to give

J5ond
p

.,.n 1 d

>

—fp () —[Ed +
(43)

Using divergence theorem, we get

d
Jag)d 2-[,V.(3d + [Ld
Since Q) 1s arbitrary, we must have

>

(44)

TP )IZ-V.0p )-V(I)+5 (45)

Expanding out

dlr, +2->—V(p )v-p (V.v)—V.(lg)+pT
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(46)
Or
dln +pa— >-nVp.v—pVn.v—p (V.v) -
1 £
v.(2)+£ (47)
0 0
I(U—+Vp.v+pV.v)r, +p(0—+\7n.v)-
a\ , #
v.(2)+£ (48)
So, the matenals time derivative of
pa na g b
ﬁ=3—+Vp.v,i1=dir,+Vn+Vn.v (49)
Therefore
B +pV.0)n + piy = —V. (%) +£ (50)
p+pV.v)n=0,¢e (50)g
. ay , ¢
pi 2 -v(3) +£ (1)

In terms of internal energy equation (51) can be
written as

v

(E—17)—06:Vv s —“‘T (52)
Where,
._d
é=—+Ve.v (53)
e=e(x, t)
x=re—ze,= r=(R)
Jd ,d 0
Ve=(d—+o—+d—)8.v (54

Equation (40) can be redefined when supplied
source is absent 1.e. S(x, t) = 0 given by

= 0whiht the sc ae (40)
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4.0 DISCUSSION OF RESULT

We have established the processes involved in
bone formation and the thermodynamics involved
in bone deformation. We have also established that
externally supplied work to the solid bone, when
not stored as free energy 1 dissipated into heat
form. Mathematical Analysis for bone deformation
including stress and strain associated with
Dissipation of energy in mineralized tissue were

established.
5.0 CONCLUSION

The paper gives extensive analysis of dissipation
of energy in mineralized tissue with trabecular
bone as a caze study. Mathematical analysis of
energy balance and constitute equation for bone
deformation as it affect energy dissipation in
mineralized tizsue were shown.
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