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Abstract.

Poisson regression is the traditional technique for handling count data. The assumption of
equality of mean and variance which is an important property of the Poisson distribution makes
the application of the distribution on count data highly restrictive since in reality count data do
not always satisfy this assumption. The Generalized Poisson distribution and the Conway-
Maxwell Poisson regression are some of the proposed remedies for handling under dispersed
data. Our recent work on theoretical exposition of the re-parameterization and extension of the
Conway-Maxwell-Poisson regression models to accommodate random effects appeared in the
literature. This paper presents a simulation study to evaluate the performance of the re-
parameterized Conway-Maxwell-Poisson Generalized Linear Mixed Effects Model
(CMPGLMM) for handling the problem of under-dispersion in clustered data. The re-
parameterization allows the response to be directly related to the regression coefficients via an
approximation of the mean, thereby, leading to straightforward interpretation of the
coefficients. The simulation result showed that the implementation is reliable and the
CMPGLMM produced results that are better than the traditional Poisson and Negative-
Binomial models which imply that the CMPGLMM is a better alternative for under-dispersed
clustered count data.

Key words: Under-dispersion, Clustered data, Poisson regression, Mixed-effect, Monte Carlo

Studies.

1. INTRODUCTION Normal response data by using link

Generalized linear mixed models
(GLMMs) also known as multilevel
generalized linear models (GLMs) are
popular for multilevel data with units
nested in clusters. GLMMs combine the
properties of GLMs and linear mixed
effects models (LMMs). As GLMs they
have the ability to fit non-linear and non-
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functions and responses drawn from
distributions in the exponential family. As
mixed models they have the ability to
include both fixed and random effects.
Mixed-effects models represent the
covariance structure related to the
clustering of data by associating the
common random effects to observations
that have the same level of a clustering
variable.

Poisson distribution using the mixed effect
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framework is a traditional method for
handling count data. One of such technique
is the Poisson-Gamma distribution, though
unsuitable for under-dispersed data
McCullagh and Nelder (1997) also noted
that the procedure is an unpopular option
with problematic link. The Com-Poisson
regression proposed by Sellers and
Shmueli (2010) was recently extended by
Dikko etal (2017) to accommodate random
effects for handling clustered count data
which are frequently encountered in
observational or experimental studies.

Statistical methods for the analysis of
cross-sectional count data where only one
measurement is made for a variable of
interest for each individual/observational
unit in the study are well developed in
literature. An important assumption for
modelling cross-sectional data is that
observations are independent of each other.
Therefore, statistical methods for
analyzing cross-sectional data cannot
directly be used for analyzing longitudinal
or clustered data. Clustered data can be
defined as data in which the observations
are grouped into disjoint classes called
clusters according to some classification
criterion (Pinheiro, 1994). These includes
longitudinal data where individuals in a
longitudinal setting are followed over a
period of time and data collected at
multiple time point for each individual
(Wu, 2010). Here observations from each
individual constitute a cluster. Mixed
models were developed to handle clustered
data and have attracted lots of interest in
Statistics for decades. Observations in the
same cluster usually cannot be considered

independent therefore mixed effects
models constitute a convenient tool for
modelling cluster dependence.

Dikko et al (2017) combined the ability of
the GLMMs to account for correlation
within clustered data and the flexibility of
the COM-Poisson distribution in handling
any dispersion level in count data to
propose a COM-Poisson GLMM
(CMPGLMM). In this paper, we present a
simulation study to evaluate the
performance of the CMPGLMM alongside
the Poisson and Negative-Binomial
GLMM in the presence of under-
dispersion.

The rest of the paper is organized as
follows. Section 2 provides an overview of
count distributions and regression models;
section 3 gives some details on the re-
parameterization used by Dikko et al
(2017) as well as some information on
implementation; section 4 consists of the
simulation setting, results and discussion
while section 5 provides concluding
remarks.

2. COUNTMODELS

2.1Poisson Regression

The Poisson distribution characterizes the
probability of observing any discrete
number of events given an underlying
mean count of events, assuming that the
timing of the events is random and
independent (Le, 2003).

The Poisson regression model 1s a model
where the mean of the distribution is a
function of the explanatory variables, with
the defining characteristic that the
conditional mean of the outcome
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explanatorv variables, with the defining characteristic that the conditional mean of the outcome

is equal to the conditional variance (Algamal, 2012; Algamal and Lee, 2015).

In Poisson regression model. the number of events y; has a Poisson distribution

with a conditional mean that depends on individual characteristics according to the

structural model,
P
P(Yl) = w VI_?I l; V; = 01...;i=
12..,n 1)
and the conditional mean parameter 6, = exp(X7B) . where,

BT = [Bl_[.?z Sy Bp]denotggi a 1 X p vector of regression parameters and X;ap X 1

vector,p = k + 1.

The interpretation of each coefficient depends on whether the corresponding

covariate is categorical or continuous. If the covariates are continuous then
exp(ﬁj) represents a multiplicative effect of the X; on the expected mean (Liao,
1994).

There are two main approaches for interpreting coefficients in regression
models(Long, 1997). The first approach examines the changes in the conditional

mean for a unit change in a single predictor via the additive or the multiplicative

model. The second approach used in non-linear regression models is to examine
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Shmueli et al (2005)used an asymptotic expression to derive the approximation for

Z with the mean and variance given as:

E(Y)
N+ YYo= (3
Var(Y) »
%,15 @

3. ANEW PARAMETERIZATION OF THE COM-POISSON DISTRIBUTION

1
Letw = Av + % - %which is the approximated mean of the distribution. Guikema

and Coffelt (2008) expressed A in terms of @, that is,A = a” and then model the

response via

a; = exp (X{ f)
Here, we express A in terms of w:

/1-( 1 1)"
= w—%+§ 5

[The relationship between ¥, and X; is modelled via
E(Y) # w; = exp (X[ §)

The Com-Poisson PMF under our re-parameterization is given as
P(yi| wyv)

a- 2+
-( DZC) ®)
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1,1\
w [\@i"3t3
Where Z(w;,v) = Xr-o vl K

Based on the re-parameterized Com-Poisson distribution given above, we present

the formulation of ourmixed effect model in the next subsection

Let y;;denote the jthresponse for the ith cluster,i = 1,...,Nandj = 1,...,n,.
For each i, conditional on random effect b;, the y;;,j = 1,...,n; are assumed to
be independent and follow a Com-Poisson (CMP) distribution where the
probability mass function of the CMP distribution using our proposed re-

parameterization is
P(yijl b;, wij:")

_ ((wij - % n %)J’ij)v
(yij!)vz((wij - % +%),v) (6)

where,

so)- T 255 )

h!

1.1
E[¥;] » w; E!PQ,SINWV“"[Yij]={""TF+2 where @;; >0,v20,i = 1,2,..,N ;

y;=012..]

The heirechical representation of our CMPMM formulation is,
yij| bi~independent CMP (w; i v) 7
b;~i.i.d N(0,02)
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g (E(Yijl bi)) = logw;; =

XiB + b (8)
and
w;j
=exp(X] B +b,). 9

Details of the procedure for obtaining estimates of the parameters in the
CMPGLMM can be found in Dikko et al (2017).

3.1 Implementation

The Conway-Maxwell Poisson Generalized Linear Mixed effect Model
(CMPGLMM) has been implemented using R (R Core Team, 2017). To maximize
the likelihood functions, we employ the Bound Optimization BY Quadratic
Approximation (BOBYQA) Powell, (2009) algorithm which performs derivative-
free bound-constrained optimization using an iteratively constructed quadratic
approximation for the likelihood function. The algorithm is very robust for
optimizing functions with many parameters. It uses a trust region method that
forms quadratic models by interpolation. The algorithm optionally allows
constraints to be placed on the parameters. For more details on the algorithm see
(Powell, 2009). The BOBYQA algorithm adopted for this work is the one
implanted by the nloptr R package version 1.04 (Johnson, 2017) which
implements an R interface to NLopt. NLopt is a free/open-source library for

nonlinear optimization which provides a common platform for a number of
different free optimization routines as well as original implementations of various
other algorithms.
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Various R functions were written to camry out specific tasks. For example, the

functionCOMP 7.0 and likfncompute z(6, j,v) . Q(b;) and ¢,(B,7,5) (the
profiled loglikelihood for f respectively). The main R function that is called to fit
a CMPGLMM given a dataset is cmpfitme. Calling the function will make calls

to various necessary functions and retum the estimated coefficients, random effects
variance as well as standard errors. The function allows the response variable,
predictors as well as the clustering variables to be specified. An example of the

function usage is

Cmpfitme (No casualties~month+Aget+Gender+Cause+Type Acci

dent+Nature road+(1l|location)+(1|Type Vehicle),data=cda
t)

In the above example, No casualties is the count response variable, month,

Age, Gender, Cause.Type AccidentandNature road are the predictors

while location and Type Vehicle are the clustering variables which will

constitute random effects terms.

4. SIMULATION STUDIES
The performance of the CMPGLMM for estimation at various sample sizes,

dispersion level is examined through empirical simulations vis-a-vis other
clustered count modelling methods such as the Poisson GLMM (PGLMM) and the
negative binomial GLMM (NBGLMM). All simulations and computations were
carried out using R(R Core Team_2017).

4.1 Simulation Setting
The true underlying model from which we simulate data is a model with one

clustering variable and is given by
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E(yij |X1ij'X2ij'bi) =0
= exp(By + X1y + XziB2 + by), (10)
b;~N(0,0)
L=1...m. j=1,..,n;,The parameters of the model were set as follows: g, =
0.2, 8y =-2,8,=0.3and 6 = 1. The number of clusters was varied asm €
{ 5,10} and the number of observations per cluster was set agn; € { 5,10}. Hence,

the sample size setting considered are: m =5, n; =5 (total number of
observations n = 25); m = 5, n; = 10 (total number of observations n = 50);
m =10, n; = 10 (total number of observations n = 100); Furthermore, the
predictors were generated as follows: X, ~N(0,1), X, ~Unif(0,2).

The under-dispersed distribution considered is the double Poisson (DPOIS)
distribution (Efron, 1986; Ridout and Begbeas. 2004). The under-dispersed

responses were simulated such that y,;~DP0IS(6,;,0.3).

ijs

This model has three fixed effects parameters (f,, p, and f,), adding the random
effects variance parameter o2 makes the total number of parameters to be four. It is
important to note that there is only one random effects term in the model under

consideration, therefore m random effects will be estimated for each case.

Estimates of the Poisson GLMM (PGLMM) and the negative binomial GLMM
(NBGLMM) were obtained using the algorithms implemented in the 1me4 R
package while the CMPGLMM estimates were obtained using our own R
implementation. The performances of the methods are evaluated over 100

replications of each setting discussed above. The evaluation criteria are: average

estimation eror (AE,) defined as E(|8; — B;|) = Zlf (');ﬁ |: mean-squared errors of
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~ 2
estimates (MSEﬁj) defined as E ([p’] - ﬁj]z) = &ﬁllo;fi j=0,1,2. Similarly,

estimation of ¢ s also evaluated.

4.2 RESULTS/DISCUSSION

The results of the application of the techniques and simulation are presented in
Table 1. Only the estimates of the major parameters (fixed effects and random
effects standard deviation) arereported here.

The simulation results show that the CMPGLMM performed better and yielded
better results than the PGLMM and NBGLMM when the correlated count data are
under-dispersed. The simulation results also show that the estimate of the
dispersion parameter ¥ of the CMPGLMM varies according to the nature of
dispersion exhibited by the count data. For example, the average estimates ¥ for
m = 10 (10 clusters) and n; = 10 (10 observations per cluster) under-dispersion is
3.807. This implies that during modelling of clustered count data, using the
CMPGLMM the method detects the type of dispersion and fits the corresponding
model. Furthermore, the average estimated dispersion parameter ¥ of the
CMPGLMM is 4.009 for small sample size setting and 4.14 at the other sample
size settings showing that the response data are highly under-dispersed. The
CMPGLMM produced the lowest estimation and mean square emors for all
parameters at all the different sample size settings. Also, the CMPGLMM
produced the lowest emors for o at all the sample size settings (m = 5. n; = 5),
(m=5,n; = 10)and (m = 10, n; = 10).

Table 1:Average estimation errors (AE) and mean squared errors of estimation
(MSE) for underdispersion based on 100 replications over three different sample
Size settings.
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Sample Avergae Estimation Error MSE
Size Method
setting Bo | B1 | B2 o Bo B4 B o
PGIMM |0.858|0.061|0.083]0.394]50.114|0374( 0.169 | 0.377
m=§ [ NBGLMM | 0.8580.061]0.0830.394[50.113[0.374 [ 0.169 {0377
'~ [omPeiane
= = 0.76810.056(0078(0.214]150.011|1 0371 | 0.163 |10.309
4.009)
PGIMM |2.732(0.185(0.15210.741]12.400| 0.052 | 0.037 |0.732
n;1=_5’ NBGIMM |2.732]0.185]/0.152(0.741]12.400( 0.052 | 0.037 |0.732
1
0 CJ;H,GLW 2.639|0.136(0.14610.207]11.495| 0.028 | 0.035 | 0.066
"V =414)
PGIMM |1.862]|0.087(0.105|0499| 6.812 10.012| 0.021 [0.313
T(): NBGIMM |1861|0.087|0.105[0.499]| 6.812 | 0.012| 0.021 | 0313
- | cMPeLMM
iO &= 1.85510.074(0.10510.261]| 6.718 | 0.009 | 0.021 | 0.107
3.807)

5. CONCLUSION

The implementation of the CMPGMM has been discussed. The performance of the
Com-Poisson Generalized Linear Mixed Effects Model (CMPGLMM) has been
evaluated compared to the Poisson and Negative Binomial linear mixed effects
models (PGLMM and NBGLMM respectively) via Monte Carlo studies. The

simulation result shows that our implementation is reliable. The implementation
allows both the fixed effects and random effects parameters to be estimated at a
relatively good computational cost. Also, the implementation allows the dispersion

parameter v to be estimated from which one can deduce the type of dispersion.

The results from the simulation show that CMPGLMM produced the best results
among the three methods used at different sample size settings, i.¢, the model
outperform the PGLMM and the NBGLMM this is obviously due to presence of
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under-dispersion in the response. The result here
shows the versatility of CMPGLMM in handling

under-dispersion in clustered count data.
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