
Confluence Journal of  Pure and Applied Sciences (CJPAS)
Faculty of  Science Federal University Lokoja, Kogi State, Nigeria

Vol. 3, No 1 June 2020
ISSN: 2016-1303   Web: www.cjpas.fulokoja.edu.ng

VARIATIONS OF CRAMER'S RULE IN WZ FACTORIZATION

1 *2
Olayiwola Babarinsa & Edogbanya Helen Olaronke

Department of Mathematical Sciences, Federal University Lokoja, Kogi State, Nigeria.
E-mail: , olayiwola.babarinsa@fulokoja.edu.ng *helen.edogbanya@fulokoja.edu.ng

ABSTRACT
This article compares four established variations of Cramer's rule to solve the linear systems in WZ 
factorization. The methods are implemented on MATLAB and the results show the matrix norms of the 
methods are better than classical Cramer's rule. The application of the variations of Cramer's rule in 
WZ factorization can now be compared on mesh multiprocessors, since the methods minimize round-off 
error. 
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1.0 INTRODUCTION

WZ factorization of nonsingular matrix was 
proposed by Evans and Hatzopoulos(D. J. Evans 
& Oksa, 1997).  The factorization has been 
applied in scientific computing such as in science 
and engineering due to its existence and 
uniqueness, see (Bylina, 2018; Efremides, 
Bekakos, & Evans, 2002; Evans & Hatzopoulos, 
1979; D. J. Evans, 2002; Rao, 1997; Rhofi & 
Ameur, 2016). WZ factorization relies on 
nonsingular central submatrices where it 
s imu l t an eo u s ly  co mp u te s  tw o  ma t r i x 
elements(Heinig & Rost, 2004).WZ factorization 
is an alternative to LU factorization.In WZ 
factorization of nonsingular matrix B,  W-matrix 
(bow-tie matrix) and Z-matrix (hourglass matrix) 
which are  also known as interlocking quadrant 
factors of B
Coexist such that    B = WZ

Thus, WZ factorization executes components in 
parallel with      steps if n is even or     

 
n
2

n-1
2

 steps if n is odd (Bylina & Bylina, 2009). Many 
2x2 linear systems are solved during WZ 
factorization to obtain the elements in W -matrix 
and then to compute Z-matrix. These 2x2  linear 
systems in WZ factorization are solved by 
classical Cramer's rule for over three decades. 

Although Cramer's rule is assumed to be less 
practical due to its setbacks, many modifications 
have been made on Cramer's rule to solve simple 
linear systems, see(Babarinsa & Kamarulhaili, 
2019; Heinig & Rost, 2005; Ufuoma, 2013) and 
the references therein. Due to round off errors 
which may become significant on problems with 
non-integer coefficients, Moler (1974) expressed 
that Cramer's rule is unsatisfactory even for 2x2 
linear systems because of round off errors. 
However, Dunham (1980) gives a counter 
example to the statement to show that Cramer's 
rule is satisfactory.  Thus, accurate methods to 
evaluate determinants make Cramer's rule 
numerically stable (Habgood & Arel, 2012). In 
Section 2, we apply four variations of Cramer's 
rule proposed by 'Babarinsa and Kamarulhaili 
(2017, 2019). The methods are implemented on 
MATLAB R2018b for selected sparsematrices to 
obtain the matrix norms.

2.0 METHOD
S O LV I N G  L I N E A R  S Y S T E M S  I N  W  Z 

FACTORIZATION WITH VARIATIONS OF 

CRAMER'S RULE

A linear system is defined as (Hogben, 2007)
                   Bx       =       c,
When 
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T h e o r e m  2 . 1 . ' ( B r u n e t t i  &  R e n a t o , 
2014)[Cramer's rule] Let                  be an  n x n 
system of linear equation and B an n x n 
nonsingular matrix,then the unique solution x =
                to the linear system is given by 

Where B i/c is the matrix obtained from coefficient 
matrix B by substituting the column vector c to 
the ith column of B, for I = 1,2,......n.

It is a well-established theorem that if the ith 
column of matrix B is the sum or difference of the 
ith column of matrix ith column of matrix D and 
other columns in C and D are equal to the 
corresponding columns in B (Lipschutz, Lipson, 
& Lipschutz, 2009). Then det (B) = det ( C ) + det 
(D) (3)

More so, if the ith column of matrix B is replaced 
with the row sum of its matrix to obtain a new 
matrix        i  with allother columns in B and              

remain the same, for i = 1,2,.....n, Then, the 
determinant of the matrix and the obtained matrix 
are equal (Babarinsa & Kamarulhaili, 2017).  
That is, (4)

Now, we can deduce that if column vector c is 
added to or subtracted from the ith column of 
matrix         (i.e the ith column of matrix B where 
its row sum replaced), then we can re-write 
equation (3) via (4) as

where is the matrix obtained from by

adding (or subtracting) the column vector c to (or 
from) the is the matrix obtained from 

by substituting column vector c to the ith of 

matrix B is replaced by its row sum. It is important 

to note that if
 

 then

Corollary 2.2.(Babarinsa & Kamarulhaili, 
2017) Let Bx=c be qn n x n system of linear 
equation and B an  n x n  nonsingular matrix of x, 
then the ith  entry xi of the unique solution   

  to the linear system is 
given by

When           is the matrix obtained from B by 
adding the constant terms of vector C to the ith
column of B, for I= 1, 2, ..., n 
  
Corollary 2.3. (Babarinsa & Kamarulhaili, 
2017) Let Bx=C be an n x n  system of linear 
equation and B an  n x n  nonsingular matrix of 
x, then the ith  entry xi of the unique solution

to the linear system 

is given by

When Bi-c is the matrix obtained from B by 
subtracting the constant terms of vector C from 
the ith column of B, for  I = 1, 2, ....., n 
 
Corollary 2.4. (Babarinsa & Kamarulhaili, 
2019) Let Bx=C be an n x n  system of linear 
equation and B a square matrix  of x, then the 
ith  entry xi of the unique solution x =

to the linear system is given by

When is the matrix obtained from 

adding the column vector c to the ith column of 
and is the matrix obtained from B with 

 
 

it ith its column being replaced by the row sum 
of B, for I = 1, 2, ....., n 

Corollary 2.4. (Babarinsa & Kamarulhaili, 
2019) Let Bx=C be an n x n  system of linear 
equation and B a square matrix  of x, then the 
ith  entry xi of the unique solution x =

to the linear system is given 

by

When is the matrix obtained from 

by subtracting the column vector c from the  
column of and   is the matrix obtained  

from B with it ith column being replaced by the 
row sum of B from i -= 1, 2, ......, n
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NUMERICAL EXAMPLE

Given the linear equation

Corollary 1

Corollary 2

Corollary 3

Row sum 

Row sum + c =

Corollary 4

Row sum

Row sum c =

It was shown that Corollary 2.2, Corollary 2.3, 
Corollary 2.4 and Corollary 2.5 are equal and are 
equivalent to Theorem 2.1. In fact, Corollary 2.3 
and Corollary 2.5 are equal as well as Corollary 
2 .2  and  Coro l l a ry  2 .4 .  Howeve r,  t he 
computational cost of the methods increases as 
the order of the linear system increases 
notwithstanding, the highlighted methods 
especially for a non-integer

We shall attribute WZ, WZ , WZ  , WZ   and WZ  1 2 3 4

factorization respectively for using Theorem 2.1, 
Corollary2.2, Corollary 2.3, Corollary 2.4 and 
Corollary 2.5 to solve the linear systems of the 
factorization.  Now, for WZ factorization 
algorithm, we obtain the ( n-1) the element of the 
(i-1)th  and (n-i+1)th column of  w-matrix by 
computing  and  from

which update the elements of Z-matrix from

= + + 12

and we then proceed similarly for the central 
submatrices of size ( n-2k) and so on. Where

and

We can now re-write Equation (11) 

in matrix form as
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(13)

If we apply Theorem 2.1 to derive W-matrix by 
computing and

  with respect to the first and second column B 
from equation (13), we obtain

and (14)

When

The complete  MATLAB code of  VWZ 
factorization is given in Listing 1.

Now, if we apply corollary 2.2 to compute 

and in Equation (13) . Then,

and

When

The Wz1 factorization is the factorization 

obtained from using Corollary 2.2 and its 

MATLAB code for computing the elements of W 

-matrix is given in Listing 2.

Furthermore, if we apply corollary 2.3 top 
compute W  and in Equation (13). 

Then, and

 (16)

 =
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Listing1:MATLABcodeofWZ

 

factorization.

 

 

1

 

func�onWZfactoriza�on(B,W,Z)

 

2 

 

%stepsofelimina�on -  from B  to  Z

 

3 

 

B= input ( 'matrix B  = ' ) ;

  

4 

 

n = size (B,1) ;

  

5

 

W =   zeros ( n ) ;

  
6

 

for

   

k  =

   

1 : ceil ( ( n - 1) / 2 )

  
7

  

k2  =  n  -  k  +   1 ;

  
8

  

determinant   =  B(k , k)*B(k2 , k2) - B (k2 , k) *B(k, k2) ;

 
9

  

if determinant   ==  0

  
10

  

exi�lag   =   0;

  
11

   

for   i1   =  k : k2

  
12

         

for   i2   =   i1 : k2

  
13

   

determinant= B(i1 ,k)*B(i2,k2)- B(i2,k)*B( i1 , k2 ) ;

 14                                  ifdeterminant

   

~=  0

 15                                    disp('input

 

matrix cannotbefactorizedto  Z - matrix' )

 16                                                    tmp  =  B ( i1

 

, k : k2

 

) ;

 17                                                    B ( i1

 

, k : k2

 

)  =  B ( k , k : k2

 

) ;

 18                                      
              

B ( k , k : k2
 

)  =  tmp ;
 19                                                    tmp  =  B ( i2

 
, k : k2

 
) ;

 20                                                    B ( i2
 

, k : k2
 

)  =  B ( k2 , k : k2
 
) ;

 21                                   
                 

B ( k2 , k : k2
 

)  =  tmp ;
 22                                                     exi�lag

   
=   1 ;

 23                             break
 24                                           end

 25                                 end
 

26          
              

end
 

27                        ifexi�lag
   

==  0
 

28                                 Z  =  B ;   
29                                  return  
30                        end  
31              end  
32      %findingelementsofW  

33         %  To  compute   ith   tothe(n- 1)thelementof(i- 1)thcolumnofW  

34        W(k+1:k2- 1,k)=(B(k2,k)*B(k+1:k2- 1,k2)- B(k2,k2)*B(k+1:k2- 1,k))/determinant ; 

35         %  To  compute   ith   tothe(n- 1)thelementof   (n- i+1)thcolumnofW 

36        W(k+1:k2- 1,k2)=(B(k,k2)*B(k+1:k2- 1,k)- B(k,k)*B(k+1:k2- 1,k2))/ determinant ; 

37            for   m= 1 : n  

38             W( m, m) = 1 ;  

39             W( m, n+1- m) ;
 

40         end
 

41         %  upda�ng  B
 

42         B(k + 1 : k2 - 1 , k)  =   0;
 

43         B(k + 1 : k2 - 1 , k2)  =   0 ;
 

44    
   

B(k+1:k2- 1,k+1:k2- 1)=B(k+1:k2- 1,k+1:k2- 1)+W(k+1:k2- 1,k)*B(k,k+1:k2- 1)+W(k+1:k2- 1,k2)* 
B(k2,k+1:k2- 1);

 

45              Z  =  B ;
 

46     end
 

40



Listing2:MATLABcodeofWZ1 factorization. 

 
 

1   % finding elements of W 

2     W(k+1:k2- 1,k)=B(k2,k)*B(k+1:k2- 1,k2)- B(k2,k2)*B(k+1:k2- 1,k) 

3                 
                      

- B(k2,k)*B(k,k2)+B(k2,k2)*B(k,k))/determinant)- 1;
 

4     W(k+1:k2- 1,k2)=((B(k,k2)*B(k+1:k2- 1,k)- B(k+1:k2- 1,k2)*B(k,k)
 

5                                             - B(k2,k)*B(k,k2) +B(k2,k2)*B(k,k))/determinant)- 1;
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W Z2 factorization is the factorization obtained from using Corollary 2.3 where its MATLAB code for 
computing elements of W -matrix is given in Listing.

Besides, we can apply Corollary 2.4 to compute

and   

in equation (13) as

( 17)   

More so Wz3 factorization is the factorization obtained from using Corollary 2.4 and its MATLAB code 
for computing elements of W -matrix is given in Listing 4.

Lastly, if we apply Corollary 2.5 to compute and in Equation (13) then

(18) and

Lastly, the Wz3 factorization is obtrained from using corollary 2.5 where it's MATLAB code for 
computing element of 

Our analysis shows that the matrix norms of WZ, WZ1, WZ2, WZ3, and Wz4 factorization are only 
influenced by the architecture of the algorithm used.  The WZ factorization has the worst algorithm for 
matrix norm because the accuracy of our algorithms based on the relative residual depends more on the 
Frobenius norm than the matrix size. The matrix norms of all the factorizations increase as the size of 
their matrices increase. WZ4 factorization is about 15% better than WZ factorization. 
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3. Conclusion

The advantage of variations Cramer's rule in WZ factorization is to minimize round-off error.  The 
methods produce better matrix norms than classical Cramer's rule in the factorizations via MATLAB.

Listing 3: MATLAB code of W Z 2

factorization

Listing 4: MATLAB code of W Z 3

factorization

Listing 5: MATLAB code of W Z 4

factorization

 

 
 

Table 1: Norms of �+

 

�, �+

 

�1

 

, �+

 

�2

 

, �+

 

�3

 

and 
�+

 

�4

 

factorization on MATLAB R2018b.

 

Matrixname

 

Matrixsize

 

� − �)�

 

�!− ��/1

 

�!− ��/2

 

�!− ��/3

 

�!− ��/4

Trefethen_500 500

 

1.98E-20

 

1.73E-20

 

1.14E-20

 

0.96E-20

 

0.98E-20
tub1000 1,000

 

2.88E-20

 

2.21E-20

 

1.79E-20

 

1.57E-20

 

1.72E-20
comsol 1,500

 

3.85E-20

 

3.43E-20

 

2.94E-20

 

2.13E-20

 

2.19E-20
olm2000 2,000

 

6.62E-20

 

6.30E-20

 

6.03E-20

 

5.32E-20

 

5.31E-20
cryg2500 2,500

 

8.51E-20

 

8.22E-20

 

7.27E-20

 

6.35E-20

 

6.36E-20
nasa2910 2,910

 

9.59E-20

 

9.28E-20

 

8.96E-20

 

8.76E-20

 

8.68E-20
thermal 3,456

 

1.02E-19

 

0.88E-19

 

0.85E-19

 

0.80E-19

 

0.78E-19
ACTIVSg2000 4,000

 

2.57E-19

 

2.29E-19

 

2.08E-19

 

1.97E-19

 

1.90E-19
bcsstk28 4,410

 

3.51E-19

 

3.32E-19

 

3.11E-19 2.96E-19 2.79E-19
rdb5000

 

5,000

 

3.32E-19

 

3.12E-19

 

2.88E-19 2.73E-19 2.60E-19

 

 

1   %finding elementsof W

 

2      W( k + 1 : k2 −1 , k ) = 1 − ( (B ( k2 , k2 ) *B ( k + 1 : k2 −1 , k ) +B ( k2 , k2 ) *B ( k , k )
3                                        −B ( k2 , k ) *B ( k + 1 : k2 −1 , k2 )  −B ( k2 , k ) *B ( k , k2 ) ) / determinant) ;
4      W( k + 1 : k2 −1 , k2 ) =1 −(B ( k + 1 : k2 −1 , k2 ) * ( B ( k , k ) +B (

 

k2 , k2 ) *B ( k , k )
5                                               −B ( k , k2 ) *B ( k + 1 : k2 −1 , k )−B ( k2 , k ) *B ( k , k2 ) ) / determinant) ;

1   %finding elementsof W

2     W(k+1:k2− 1,k)=((B(k2,k)*B(k+1:k2− 1,k2)− B(k2,k2)*B(k+1:k2− 1,k)

3                                         − B(k2,k)*B(k,k2)+B(k2,k2)*B(k,k))/determinant)− 1;

4     W(k+1:k2− 1,k2)=((B(k,k2)*B(k+1:k2− 1,k)− B(k+1:k2− 1,k2)*B(k,k)

5                                             − B(k2,k)*B(k,k2) +B(k2,k2)*B(k,k))/determinant)− 1;

1   %finding elementsof W

2     W(k+1:k2− 1,k)=1− ((B(k2,k2)*B(k+1:k2− 1,k) − B(k2,k)*B(k+1:k2− 1,k2)

3                                     +B(k2,k2)*B(k,k)− B(k2,k)*B(k,k2))/determinant);

4     W(k+1:k2− 1,k2)=1− (B(k+1:k2− 1,k2)*(B(k,k)− B(k,k2)*B(k+1:k2− 1,k)

5                     − B(k2,k)*B(k,k2)+B(k2,k2)*B(k,k))/determinant)
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Figure 1: Matrix norms of  and factorization on MATLAB R2018b.
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