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ABSTRACT

Some variants of Broyden-Fletcher-Goldfarb-Shanno conjugate gradient (BFGS-CGQG) method are developed in
this work. This is achieved by combining BFGS method with coefficients of CG like Fletcher-Reeves, Hestenes-
Stiefel, Dai and Yuan, etc. We prove the global convergence of one of these methods using Armijo-type line
search. The purpose of this paper is to present these algorithms as well as their Dolan and More's performances to
solve variety of large-scale unconstrained optimization problems. Some comparisons with conventional BFGS-

CG algorithm are also presented.

Preliminary results show that among the variants of BFGS — CG method, BFGS — BAN competes well with the
conventional BFGS — CG method in terms of number of iterations and CPU time.

Keywords:BFGS — CG method, Armijo - type line Search, global convergence, unconstrained optimization.

1. INTRODUCTION

The Conjugate Gradient (CG) methods are one of
the important techniques used for seeking solutions
to unconstrained optimization problems. They are
popular because of their attractive features, such as,
computer low memory requirements, relatively
simple program, good convergence properties,
among others. Applications of CG methods span
across many field of endeavours, such as
engineering, management sciences, operations
research, social sciences, physical and behavioural
sciences e.t.c.

CG algorithms can be applied to find the ideal
feasible solution to a problem in a company where
the problem has been modeled into an
unconstrained optimization problem (Ibrahim and
Rohanin, 2016). The first CG method proposed by
(Hestenes and Stiefel, 1952) was established to
solve positive definite symmetric matrices, linear
equations. However, the first nonlinear CG method
was proposed by (Fletcher and Reeves, 1964) to
solve nonlinear
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equations. Despite the fact that CG methods are not
the fastest or most robust optimization algorithms for
nonlinear problems available today, they still remain
very popular for Engineers, Mathematicians, and
Scientists who engaged in solving large problems
(Ibrahim and Rohanin, 2016).

A nonlinear optimization problem of the form below
will be considered

min f(x), x € R" (1.1)

where f 15 smooth (continuously differentiable) and
g{(x) 1s the gradient of the objective function f(x). CG
methods generate a sequence of points {x,.} starting
from an mitial guess x; € R™ by using the iterative
scheme

k=012..

where 5, = adj,, x;; 15 the current iterate, and a;, 15 a
step length which 1s determined by some line searches.

X4l = X T Sk

In this paper a; was computed using an Armyjo - type
hine search given as follows
Givens >0, 8. €(0,1), o€ (0,1) (1.2)

@ = max {s, sB.sﬁz,sﬂg.sB*....] (1.3)

such that
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f(xk + akdk) < f(xk) + oakgkrdk (1.4)

k=0,1,2, ... Then, the sequence {x,};i~, converges to
the optimal point x*which mimmizes f(x) .The search
direction d;, 1s defined by

{_gk
—Gk + Brdi-1

where B, is a scalar known as CG parameter. The
formula for 8, should be chosen such that the method
reduces to the linear CG method in case when f 1s
strictly convex quadratic and the line search is exact.
Well known formulae for 8, are:

d (1.5)

k=0
k=1

Fletcher and Reeves Method, 1964

T
FR _ 9k 9k
ﬁk - lgk-:": (1'6)

Polak - Ribiere - Polyak (PRP) method, 1969

PRP _ gk’ (gk~gk-1)
Ngk-101?

B (L.7)

Hestenes and Stiefel (HS) method, 1952

T
HS _ ok (@i=gi-y)
b= (9k=gk-1)Tdi—y !
Dai and Yan (DY) method, 1999
ﬁkDY - ~die-y (Gk=gk-y) (1.9)

Igk-1I1*

Liu and Storey (LS) method, 1991

LS _ -gxT yk-y
dg-y Gk-1

i (1.10)

Conjugate Descent Method, (Fletcher, 1987)

‘dk-lrﬂk-x

8,0 =
k 1gk-, I

(1.11)

Bamugbola, Ali and Nwaeze, 2010

B BAN = 28K Yies

Gk—1T¥ks LI

where g, and g, are gradients of f(x) at the points
X, and x4, respectively, while |-l 1s a norm and d;,_,
1s a direction for the previous iteration.

Conjugate gradient methods differ in their way of
defimng the scalars B;. Over the years, several choices

42

of B,. which give nse to different conjugate gradient
methods, have been proposed. Despite the famous
formulas (1.6 — 1.12), other parameters g, for nonlinear
CG methods have been proposed in literature (see for
example Dai and Yuan (2001, 2003), Zhang et al. (2006
a, 2006b), Adeleke and Osinuga (2018), Osinuga and
Olofin (2017), Kaelo (2016), Narayanan et al. (2017),
Dai (2003) Ibrahim and Rohanin (2016), Liu and Wu
(2014), Mehdi and Masoud (2001), Polyak (1969) and
Hager and Zhang (2006)).

More often, the search direction satisfies the conjugacy
property derd, =0,k # f, where H 1s the positive
definite matrix for lmear CG. For nonlinear CG
methods, the conjugacy condition 1s not satisfied since
the Hessian Vf(x) vary at different points.

In this paper, we suggest variants of hybnd BFGS-CG
algorithm for nonlinear CG methods. In section 2, we
present the description of the vanants of the BFGS - CG
method and show that the vanants of BFGS - CG are
descent. We present the convergence analysis for the
proposed methods in section 3. Section 4 comprises
numerical results of these variants against some other
existing CG methods, the benchmark problems and
lastly the conclusion in section 5.

2. Overview of Recent Hybrid CG Methods

CG methods such as 8,7, B,°° and B,°" are known
for their strong global convergence properties but are
poor in computational performance. However, methods
such as 8,%%, B, "5 and B, perform better than
B."R, B.° and B,°Y numerically. They are also
known to be among the most efficient methods because
of their restart capabulities 1f 1t encounters bad direction.
Researchers have made spirited efforts for decades and
still working to improve on the existing methods. One
of such efforts 1s the establishment of hybnd CG
methods. These hybrid CG methods combined the
strengths of one or more CG methods, thereby resulting
in strong convergence properties as well as good
numerical performance (Babaie-Kafaki (2012, 2013),
Ibrahim et al. 2014a, 2014b, 2014c, Mamat et al
(2009), Ibrahim (2014)). Although, the first work on
hybridd CG methods can be traced to Touati-Ahmed-
Storey (1990), this was later followed by the works of
Hu and Storey (1991), Gilbert and Nocedal (1992) and
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Dai and Yuan (2001) respectively. A brief overview of
only recent hybrid methods 1s given in this section.

Kaelo (2014) proposed a hybrid method based on
hybrid methods of Gilbert and Nocedal (1992) and
those of Dai and Yuan (2001). The method 1s given as

B* = max{min{ ¥, iy

@n

Y, min{ g%

1-
where ¢ = —7 >0 and y e [l,l ]. Another recently
1+y 2

proposed can be found 1n Xu and Kong (2016) as well
as Dyonevic (2016, 2017) that employed the i1deas of
linear and convex combinations of classical CG
algorithms respectively. Many other hybrids have been
proposed by combining the classical algonthms and
quasi-Newton methods to obtain the parameter 8, (see
Ibrahim et al. (2014a, 2014b), Ibrahim (2014) and Wan
Osman et al. (2017) and references therein). In Wan
Osman et al. (2017), for example, a new method was
proposed by combimng the search direction between
comjugate gradient method and quasi-Newton method
using the Davidon-Fletcher- Powell (DFP) update
formula as an approximation of Hessian. One other
example of a hybrid that uses the attractive features of
B:F® and B, P*? is that of Narayanan et al. (2017). The
ideas used by these authors were based on the
approaches of Mo, Gu and We1 (2007) and Babate-
Kafaki (2012, 2013). More recently, Adeleke and
Osinuga (2018) suggested a five-term hybrid method
based on the ideas of Wei et al (2006) and Jiang et al.
(2015) with B, in this case computed as

le.]’ - maxso. lo. €18
le:- |
;Bk = 2T T
max{]|gk|| Ay 1(8: — 8i1)mdi 1810}

22

3. Description of Method

In this section, we introduce our methods; let us simply
recall the well-known BFGS quasi - Newton method.
The direction d,, 1n BFGS method 1s given by

dy = —Hi gy (3.1)
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where H,, 1s obtained by the BFGS formula

Hiesksk He | yivk!
H..y=H, — 32
w1 =l T (32)

with Sp = Xpp — Xg-1 and Y = 9k — Gx-1- The
approximation that the Hessian must fulfill 1s

Hye156 = Vi (33)

This condition 1s required to hold for the updated matrix
Hy.,4, which 1s the secant equation. This 1s only possible
to fulfill the secant equation, if

S Ve >0 (3.9

which 1s known as the curvature condition.

By extension, Ibrahim et al. (2014a) proposed a new
hybrid CG direction as
do = {_Hkgk' k=0
¥ -Hegi + 1(=gic + Brdr-1) k=1
(3.5

T . -
wheren >0, B, = z:rz:' and H, 1s the approximate
-1

Hessian. The update formula for the BFGS 1s with
S =X ~ Xy A Yy = g — Gpe--

In line with this progress, our aim 1s to establish vanants
of the hybrid BFGS - CG method by replacing the CG
update parameter in (3.5) successively with the
formulas as shown in (1.6 - 1.12). The direction
generated by the proposed variants 1s always a descent
direction of the objective function. These vanants are
described as follows:

FR —Higx k=0
de” = {_ _ FR N
Hege + n(—gx + B "dy-1) k21
{3.6)
k=0

@, " = { P PRP
—Hegx +n(—gx+ B dr-1) k=1
3.7
dkHS _ { —Hy 9y, i, k=0
“He g + (=g + B "dy-y) k=21
3.8)
d, PAY = { s BAN =9
“Hegi + (=g + B di-1) k21
39
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d oY _ _Hkgk! k=0
A O - or k21
Hegp +n(-gx + B di-1) k2
3.10)
LS { —H gy k=0
dk = _ _ LS >
Hygi +n(—gi + B dy-y) k21
3.11)
) { —H,gp k=0
de” = 1_ - cp -
Hegi +n(=gp + B " di-y) k21
(3.12)

We prove that the variants of BFGS - CG proposed with
Armiyjo - type line search 1s globally convergent.

Algorithm 3.1. Based on the BFGS - CG method, we
propose our algorithm as follows:

Require: A starting point x,, parameters 0 < € <
1,0<6<-,6<a<15>0,6€(01),p €(01)
Step 1: Set k = 0 and compute dy = —g,.

Step 2: If Il g, lI< €, STOP; else go to Step 3.

Step 3: Compute step size aj,, such that

f(xk + akdk) < f(xk) + Sakgkrdk (313)
and
g(x, + @i dy)7dy 2 pgicTdi (3.14)

Step 4: Compute x; 41 = X; + S

Step 5: 8x+1, Yk = Bk+1 — Bx and go to Step 6.
Step 6: Compute the search direction by (3.5) using
B."R B, PRP B HS g BAN 5 DY g LS g CD
respectively.

Step 7: Letk =k + 1; and go to Step 2.

Theorem 3.2: Let the sequences {x;} and {d,} be
generated by the Algorithm 3.1 for 8,°. Then,
JiTd;, < 0 holds true. Therefore, fork> 1, g,7d, =
—@+n(1+1)) Il gie I

Proof:

dy = —Hgy + n(-gi + Bidx-1) (3.15)
9" di = —Hegi" gi + 19" (=gi + Brr-1) (3.16)
kT dy = =0 N dy 11°= 1 Il dy 124+ nBigs di-1(3.17)

gk de=—(0+n)I gk 124+ nBigs -1 (3.18)
DY _ gk gk
Let By = i = O (G-gk-0)
Ty _ _ 2 gkl gk T
G deg==(@+n) |l gi I +n(dk p— ))gk die-y
(3.19)
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Ta -1
g di =—(@+n) Il g IP+ r]("‘g"" gk %k )

A (G-gk-1)
3.20)
GTd=—(@+0) I g IP+nr I g 12 (321)
GeTde = =@+ n(1 + 1)) Il g I12 (3.22)
gTd = —c; Il g I (3.23)

where ¢, = = (@ + n(1 + 1)) which 1s bound away
from zero. Hence, g, 7d,, = —¢; |l g II?

holds. The proof 1s completed.

The descent conditions for other variants can be proved
analogously.

4. Global Convergence of Proposed Variants

We will like to propose some basic assumptions based
on the objective function in order to discuss the global
convergence of these vanants.

Assumption 4.1
A: f 15 bounded below on the level set S =
{x € R™ f(x) < f(xq)} where x, is the starting point.

B: In some neighborhood N of S, the function f is
continuously differentiable and its gradient, g(x) =
V£ (x), 1s Lipschitz continous, 1.e. there exist a constant
L > 0 such that

hg(x)-gIsLlix-yl 4.1)

forallx,y €N.

Lemma 4.2 [5]. From Assumption 4.1, posttive
constants @, and @, exist, such that for any x, and any
d, with g, Td, < 0 step size a, produced by algorithm
3.1 will satisfy either

T4
fluc+ adil) - fi < —my {2 42)
or
fOu + aydy) = fi < —wyg;7 d (43)

Theorem 4.3 [5]. Let H,, be generated by the BFGS
formula (3.2) where H,, is symmetric and positive
definite, and y, s, > 0 for all k. Furthermore, assume
that {s,} and {y,} are such that

I(yk—=G:)skll

= (4.4)

< €
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for some symmetric and positive definite matrix G(x*)
and for some sequence {¢, } with the property
Tie1 € < co. Then,

W(Hy=G)dgll _
Ml (4.5)

and the sequence {Il Hy I}, {Il H,~* I} are bound.
Furthermore based on algonthms 3.1, the search
directions d, given by equation (3.5) satisfy the descent
and sufficient descent condition (4.6) and (4.7)
respectively.

GiTd, <0 (4.6)
for all k > 0. If there exists a constant ¢, > 0 such that
GiTdy < —c1 1l gy I2 4.7
forallk > 0.

lim k—oo

Theorem 4.4 (Global Convergence). Suppose that
Assumption 4.1 and Theorem 4.3 hold. Then,
limyco Il gic 12 =0 (4.8)

Proof. By combining descent property (4.6) and
Lemma 4.2, we have

o lgkll®
k=0 W < o (49)

Hence, from Theorem 3.2, we can define that Il d;, II<
—c |l gi |I. Then, (4.9) will be sumplified as

Tizo I gi I? < o0
Therefore, the proof 1s completed.

(4.10)

4. Numerical Experiments

4.1 Benchmark Problems

This section gives the presentation of the simulation
results on the test problems for our proposed variants of
the BFGS - CG method against the conventional BFGS
— CG method. We consider some test problems from
CUTEr and (Andre1, 2008) using inexact line search
Conditions (1.3) and (1.4) for all methods in this paper
for easy comparison where § = 0.0001 and p = 0.01.
These problems are listed below and shown on table 1.

4.2 List of Problems
1. Extended Matyas Function:  f(x) =
0.26 (x;% + x,%) — 0.48 x, x,.
2. Extended Booth  Function: flx)=

(%1 + 2x,)% + (2%, + x, — 5)5.
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The Six Hump: f(x)= (4 -21x,% +

x*

3 )x12 + X1X2 + (4x22 - 4)x22.
Extended Wood Function: f(x) =
n

4,100 (xgi-2% — X4i-2)+(xgi-2 — 1) +
90(xq1-17 = Xg)* + (1 = x44-1)* +
101 (xg4-2 = 1)* = (x4 = 1)%} +
198 (x44-2 — 1)(x4; — 1).
Extended Freudenstein & Roth function:

n

f() = T2 (—13 4 x5 + ((5 — x20)%5; =
)x)2 + (=294 xpy + ((xg5-y + Vxg —
14)x2,~)2.
Quadratic  Function:  f(x) = —3803.84 —
138.08x, — 232.92x, + 128.08x,% +
203.64x,? + 182.25x, x,.
Extended  Maratos

n

function:  f(x) =

Tioi i1+ (g1 + x2° = 1)%, ¢ =100

8. Raydan 1 function: £(x) = B, - (exp(x;)
x,~).

9. Quadratic QF! function: f(x) = T ¥k, tx; ~
X,

10. Extended White and Holst: f(x)
n

Tr (X = x3i-1%)2 + (1 = x4-1)°.
n
Diagonal 4 function: f(x) = Z?zli(xn_lz +

€xz°).
Extended Rosenbrook function: f(x) =

11.

12.

T c(xai— X2i-1?) + (1 —x3i-4)%, ¢=
100.

TABLE I: LIST OF PROBLEM FUNCTIONS

No ;:);lem Dim | Initial points

1 Extended 2 [1, 1], (5. 5]. [10, 10], [50,
Matyas 30]

2 Extended 2 [10,10], [20,20], [50,50],
Booth [100, 100]

3 The six- 4 [1,1], [2.2], [5.5], [10.10]. [-
hump 10.-101, [8.8], [-8.-8]

4 Extended 4 [-1.-1,-1,-1], [-3, -1, -3, -1],
Wood [’2: '1: '27 ’1]: ['4: ‘l= '4: '1]

[2!2]= [’2:'2]: [5:5]! [‘5='5]s

Ext. Freud.

5 & Roth 24 E%]S] (-8.-8]. [10,10], [-10.-
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. 531, (20201, (3.3,
6 |Quantc |2410 |[oL
Extended (0,0, [05.5}, [10, 0.5},
7| Maratos |20 | o)
2,410, | [LL.1], B.33), 5.5.5). 10,
§ |Raydaml [, -10,-10]
o | Quadtatic | 2,410, | [5,3], 1.7, [10.10],
QF1 100 [100,100]
2,410,
White & | 100,
10 Holst 500, ['3:'3]: [6=6]’ [10,10], [373]
1000
2,410,
11 | Diagonal 4 ég’ (221, [5.5], [10,10], [15,15]
1000
2,4,10,
o | B2t 100, | [13,13], [16,16], [20.20],
Rosenbrock | 500, | [30.30]
1000
4.2 Parameter Settings

The parameters such as number of iterations (it) and
CPU time (t) were considered to evalvate the
computational capability of the proposed vanants of
BFGS - CG as compared with the conventional BFGS —
CG method. For each test problem, the stopping criteria
used are | g 1< 107° and the number of iterations
exceeds a limit of 10,000. We implemented the methods
using MATLAB R2013 wath CPU 1.30 GHz and
3.00GB RAM, on SAMSUNG PC notebook.

4.3 DISCUSSION OF RESULTS

The performance profile of Dolan and More (2002) was
used to compare the numerical strength of the proposed
variants against the conventional BFGS -CG method
based on number of iterations and CPU time. We plot
fraction P(t) of the test problems for which the method
1s within a factor 7 of the best time for each method.
The left hand side of the figures gives the % of how fast
1s a particular method in solving the test problems. The
right hand side of the figures gives the % of test
problems that are successfully solved by each method.
The solver with large probability is regarded as the best
solver for the test problems. Figures 1 — II, show that
BFGS — BAN is the fastest solver on approximately
47% of the test problems for iterations and 19% of CPU
time. However, it competes well with the conventional
BFGS - CG method by solving approximately 98% of
the test problems compared with BFGS-PRP (97%),
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BFGS-FR (96%), BFGS-HS (86%), BFGS-LS (85%),
BFGS-DY (84%) and BFGS-CD (79%) methods.

1114 ]
i
RHIE

Figure I: Performance Profile based on numbers of
tteration for BFGS — CG versus variants.

Figure II: Performance Profile based on CPU time for
BFGS - CG versus vanants.

5. CONCLUSION

In this paper, varants of the BFGS - CG method was
proposed for solving unconstrained optimization
problems. The proposed methods generate descent
directions using Armijo line search condition. Under the
line search conditions (1.3) and (1.4), we established the
global convergence of the proposed method. The
simulation results of the proposed vanants are shown to
be efficient for handling unconstrained optimization
problems. We employed one of the best methods of
comparison (Performance Profiles by (Dolan and More,
2002) to show the effectiveness of our proposed
vanants. Among the vaniants of BFGS — CG considered
i this research, BFGS — BAN competes favourably
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well with the conventional BFGS — CG method in
terms of function evaluation for number of
iterations and CPU time. Moreover, BFGS - BAN
is the fastest solver among the variants and the
conventional BFGS — CG method.
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