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ABSTRACT

In this paper, plane stagnation double-diffusive MHD convective flow with convective boundary 
conditions in the presence of thermal radiation and uniform magnetic field is investigated. The 
governing non-linear partial differential equations have been reduced to a system of nonlinear coupled 
ordinary differential equations with the use of similarity transformations. The resulting equations were 
solved numerically using the classical fourth order Runge-Kutta formula together with shooting 
technique implemented on a computer program. The effects of the physical parameters were observed 
on the velocity, temperature and concentration profiles. Computational analyses for the skin-friction 
coefficients, Nusselt and Sherwood numbers were made and presented through tables and graphical 
plots for various fluid parameters.
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1.0 INTRODUCTION

Studies abound on the stagnation point flow in 

literatures. Over the years, the flow near a 

stagnation point has caught the attention of many 

researchers due to its numerous scientific and 

industrial applications. Knowledge of the flow 

near a stagnation point has been found applicable 

and extremely useful in industrial processes like 

nuclear reactors, extraction of polymers, cooling 

of electronics devices, ( Crane,1970) researched 

on the two dimensional steady flow of an 

incompressible viscous fluid caused by a linearly 

stretching plate. Laminar mixed convection in 

two dimensional stagnation flows around heated 

surfaces was considered by (Ramachand, 1988). 

He investigated cases of an arbitrary wall 

temperature and arbitrary heat flux variation. The 

results of the investigation showed that for a 

specified range of buoyancy parameter dual 

solutions existed and a reversed flow developed in 

the buoyancy opposing flow region. In their 

work, (Sharma and Singh, 2009) analysed the 

effects of variable thermal conductivity and heat 

source/sink on MHD flow near stagnation point 

on linearly stretching sheet. They inferred that the 

rate of heat transfer at the sheet increases due to 

increase in the thermal conductivity parameter, 

however it decreases due to increases in the ratio 

of free stream velocity parameter to stretching 

sheet parameter, in absence of magnetic field and 

volumetric rate of heat /sink parameter.

Of concern in this research are the effects of 

thermal radiation in industrial processes. It has 

been established that thermal radiation effects 

plays an important role in scientific processes 

such as cooling of a metal or glass sheet. In the 

light of these applications, (Samad and Rahman, 

2006) investigated the thermal radiation 

interaction on an absorbing emitting fluid past a 

vertical porous plate immersed in a porous 
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medium. Steady radiated free convective flow 

along a vertical flat plate in the presence of 

magnetic field was investigated by (Emmanuel 

and Uddin, 2011). Their result showed that 

magnetic field can control the heat transfer and 

radiation has a significant effect on the velocity as 

well as temperature distributions.

Convective boundary condition is used mostly to 

describe a linear convective heat exchange 

condition for one or more algebraic entities in 

thermal. Thermal energy storage, nuclear plants, 

gas turbines,  are processes that define heat 

transfer analysis with convective boundary 

conditions. On the flow with convective 

boundary conditions,(Aziz, 2009) studied a 

similarity solution applied to laminar thermal 

boundary layer flow over flat plate with 

convective surface boundary conditions but only 

obtained local Biot number which was made 

global on restricted conditions. Not long ago, 

(Okedayo et al., 2011) examined the effects of 

viscous dissipation on the mixed convection heat 

transfer over a flat plate with internal heat 

generation and convective boundary condition. 

Also, (Okedayo et al., 2012a) obtained the 

similarity solution to the plane stagnation point 

flow with convective boundary conditions.

(Okedayo et al., 2012b) again examined plane 

stagnation double-diffusive MHD convective 

flow with convective boundary condition in a 

porous media. A numerical solution of the 

problem was obtained using the classical Runge-

Kutta method together with shooting technique.   

Thereafter, (Adeola and Adekunle , 2014) did an  

extension of the work of (Okedayo et al., 2012b) 

by included thermal radiation and viscous 

dissipation into their models. They both 

investigated effects of some thermo-physical 

properties on force convective stagnation point 

on a stretching sheet with convective boundary 

condition in the presence of thermal radiation and 

magnetic field.

Recently, (Bognar, 2016) presented a numerical 

method for the boundary layer problem of non-
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Newtonian fluid flow along moving surfaces 

using iterative transformation method, applying 

similarity transformation to the governing partial 

differential equations. The work exhibited the 

drag co-efficient dependence on the velocity 

rat io and on the power-law exponent .  

Thereafter, (Fenuga et al., 2018) carried out 

analysis of thermal boundary  layer flow over a 

vertical plate with electrical conductivity and 

convective surface boundary conditions using 

Runge-Kutta fourth order method with shooting 

technique. The behaviour and properties of 

thermo-physical parameters in the fluid flow 

structure of the velocity and temperature fields 

were examined.

In the presence paper, force convective 

stagnation point on a stretching sheet with 

convective boundary conditions in the presence 

of thermal radiation and magnetic fields is 

investigated. The inclusion of thermal radiation 

and viscous dissipation extended the work of 

(Bognar, 2016); (Fenuga et al., 2018). In 

addition, the effects of various parameters on the 

velocity, temperature and concentration profiles 

were presented.

2.0 MATHEMATICAL FORMULATION

A steady two-dimensional MHD flow of a 

viscous, incompressible and electrically 

conducting fluid of temperature  along a T¥
heated vertical flat plate is considered. The flow 

is assumed to be in x-direction, which is chosen 

along the plate in the upward direction and y-axis 

normal to the plate. The geometric of the flow is 

presented in figure one. It is assumed that the free 

stream velocity is of the form  where ()xUxU0=

0Uis constant.

The fluid is considered to be a gray, absorbing 

emitting radiation but non-scattering medium 

and Roseland approximation is used to describe 

the radiative heat flux in the energy equation. The 

radiative heat flux in the x-direction is negligible 

to the flux in the y-direction. Further, a uniform 

magnetic field of strength  is assumed to be 0B
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applied in the positive y-direction normal to the 

flat plate. The magnetic Reynolds number is 

assumed to small, and thus the induced magnetic 

field is negligible. The plate temperature is 

initially raised to  Tw
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(where ¥>> TTT wf ). 

Figure 2.1: Physical model and coordinate system of 
the problem
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Under the above assumptions and taking the 

usual Boussinesq's approximation into account, 

the governing equations relevant for the model, 

namely the continuity, momentum, energy and 

concentration are presented below:
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Where  is the Stefan-Boltman constant and is *s *k

the mean absorption coefficient. It is assumed 

that the temperature differences within the flow 

are sufficiently small such that  may be 4T

expressed as a linear function of temperature. 

This is accomplished by expanding  in a Taylor 4T
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Put equation (7) into equation (6). We have
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In order to solve the equations (1)-(5), we 

introduce the following similarity variables and 

dimensionless numbers:
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We apply equations (9b) on equation (1) to 

obtain:
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Hence, equation (1) is satisfied. Equally, we 

apply equations (9a, 9c and 9d) on equation (2), 

since the flow is inviscid (Okedayo et al., 2012a), 

we have:
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Applying equations (9a-9h) on equation (11), 

we have as follows:
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Substitute equations (12)-(16) into equation 

(11), expanded, divided by  and re-arranged, xU20

we have
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(3) and equation (4), using equation (9) which 
yields respectively: 
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Where the prime denotes differentiation with 

respect to .  The existence and uniqueness the h

solutions of the dimensionless governing 

equations (20-22)  was established using the 

approach in (Olanrewaju et al., 2007).

3.0 SOLUTION OF THE PROBLEM AND 
FINDINGS
Equations (20)-(22) together with their boundary 
conditions in equation (23) are coupled non-
linear ordinary differential equations which are 
difficult to solve by known available analytical 
methods. Thus, in order to solve the governing 
equations, we seek a numerical solution by 
employing the classical fourth order Runge-Kutta 
method and shooting technique used in 
(Olanrewaju et al 2007),  implemented on a 
computer program written in Matlab.. A 
convenient step size was chosen to obtain the 
desired accuracy.

The effects of various parameters on the velocity 
profile, temperature profile and concentration 
profile were computed and presented in figure 1 -
9 and followed by discussion. The fluid 
parameters were assigned the following values; 
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and respectively except where stated 2.0=cS

otherwise. Figures 1 -4 depict the velocity 
d i s t r i b u t i o n ,  h i g h l i g h t i n g  t h e  e ff e c t s 
of and respectively. It is observed an HGGmt, aD

increase in thermal Grashof number , solute tG
G r a s h o f  n u m b e r o r  m a g n e t i c m G
parameter increases the velocity profile. H

However, increase in Darcy number  leads to a 
decrease in velocity distribution. Furthermore, it 

is observed that the velocity starts minimum 
value of zero at the plate surface and increases 
exponentially to a free stream value of unity 
away far from the surface, satisfying the field 
boundary conditions for all parameter values. 

Figures 5-8 show the temperature distribution for 
various values of and respectively.  NEBic,, rP

Figures 5 and 6 reveal that there is an increase in 
the thermal boundary layer and a rise in fluid 
temperature as the values of Biot or Eckert Bi
cEnumber is increased. Further, figures (7) and 
(8) show the effects of Prandtl number and rP

radiation parameter on the temperature profile. 
An increase in thermal boundary layer and a rise 
in fluid temperature are observed only near 
boundary while a decrease in temperature is 
observed for the two parameters as we move 
away from the boundary. Furthermore, it is 
observed that the maximum values for the 
temperature are attained at the boundary and then 
decreases to zero as we move away from the 
surface, satisfying the field boundary conditions 
for all the parameter values.

The effects of the Schmidt number on the cS
species concentration are presented in figure 9. 
The concentration profile has a maximum value 
at the plate surface and decreases exponentially 
to the free stream zero value far from the plate. It 
is observed that an increase in the Schmidt 
number decreases the concentration of the fluid.
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Figure 1: Velocity profile for various values 
of thermal Grashof number
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Figure 2: Velocity profile for various values 
of solute Grashof number

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

H=0.5

H=1.0

H=2.0

Figure 3: Velocity profile for various values 
of magnetic parameter
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Figure 4: Velocity profile for various   values 
of Darcy number
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Figure 5: Temperature profile for various 
values of Biot number
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 Figure 6: Temperature profile for various 
values of Eckert number
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Figure 7: Temperature profile for various 
values of Radiation number
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Figure 8: Temperature profile for various 
values of Prandtl number
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Figure 9: Concentration profile for various 
values of Schemidt number

4.0. DISCUSSION AND CONCLUSION

In this paper, steady two dimensional plane 

stagnation point flow of a viscous incompressible 

and electrically conducting fluid towards heated 

vertical flat plate was considered under most 

reasonable physical assumptions. The fluid is 

considered to be a gray, absorbing emitting 

radiation but non-scattering medium and 

Roseland approximation was used to describe the 

radiative heat flux in the energy equation. The 

constitutive governing equations for our model 

were reduced to a system of nonlinear coupled 

ordinary differential equations with the use of 

similarity transformations. The existence and 

uniqueness of the governing equations were 

proved and former ly  es tabl i shed.  The 

mathematical models describing flows under 

consideration are in the form of complex coupled 

differential equations for which solutions are not 

easy to obtain using analytical methods. Thus, 

numerical technique has been utilized by using 

the classical fourth order Runge-Kutta formula 

together with shooting technique implemented 

on a computer program. The solutions for various 

values of fluid parameters such thermal Grashof 

number, solute Grashof number, Prandtl number, 

Radiation parameter, Biot number,  Darcy 

number, Schmidt number ,Eckert number and 

magnetic parameters were obtained. Moreover, 

Computational analyses for the skin-friction 

coefficients, Nusselt and Sherwood number were 

made and presented through tables for various 

fluid parameters. Graphical representation were 

also drawn and discussed.
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