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ABSTRACT

The object of this study is to obtain certain subordination results by making use of a generalized differential operator and some results
obtained for certain classes of analytic functions defined by the generalized differential operator. In addition, we also employ

Subordinating Factor Sequence and subordination principle. Furthermore, we pose several results on subordination theorem and derive

some consequences of our results. Some earlier known results turn out to be special cases of our new results.

Keywords:subordination, analytic function, convex, subordinating factor, convolution.

1.0 INTRODUCTION
Let 4 denote the class of functions of the form

f(z)= +ia,z'.

k-2
which are analytic in the open umit disk
U= {z 1ZE C:|z| <l} in the complex plane C and
normalized by f(0) = 0and f'(0) = 1. Let S and
K(a) (0 < a < 1) denote subclasses of
A consisting of functions that are univalent and
convex of order a in U respectively. In particular,
the class K(0) = K 1s the familiar class of convex
functions in U. The class of convex functions is
defined by

K={feA:Re(l+z’ff+(__z)))>O,zeL'}. )
Definition 1 (Hadamard Product or Convolution).
Given two functions f(z) and g(z) where f(z)1s

<

1

as defined in (1) and g(z) is given by
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glz)=z+ ib,z',

k=2
(3)
the Hadamard Product (or Convolution) g = £ of

glz) and f(z) 1s defined by

(g‘f'(z)=z+Za,b,z'=1fcg)(z) C)]
ka2

Defimition 2 (Subordination Principle).

Let f(z) and g(z) be analytic in the unit disk "

then g{(z) is said to be subordinate to f(z)in U

denoted by

glzln flz) zel,

if there exists a Schwarz function w(Z), analytic in
U with w(0), | w(z)|< 1such that

glzl=flw(z), zel (5)
In particular, if the function f(z) 1s univalentin L,
then g(z) 1s subordinate to f1(z) 1f

g0)= £(0), glU)c f(U). (6)
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Definition 3 (Subordinating factor sequence).
A sequence {c % }:.1 of complex numbers is said to

be subordinating factor sequence if whenever g( z)
of the form (3) is analytic, univalent and convex in
U, the subordination is given by
> ac,z nglz), zelU,a, =1, (Wilf, 1961).
%=1
For f (z) € A, the following differential operator
was introduced by (Salagean, 1983):
Def(z)=f(2). D'f(2) =2f(2)....D"f(2)
= D(D"1f(2)).
(neN={1.23..}.

It is given that

D"f(z)=z+ Y7 .k"a,z" @)
Sequel to(7), (Raducanu and Orhan, 2010) defined
the differential operator

DiLf(2) = z+Z[1

+.(iyn +2—p(n
-1)a,z" (®

as a generalization of (7).
Motivated by (8), (Ovekan, 2017a) also gives the
following:

Definition 4: Letn e N; 8,4 e Rand f(z) be as
defined in (1). We denote by D , f(z) the linear
operator defined by
D}, f(2):A~ A;
Dg.f(2) = f(2).
Dé'“f(z) = Dg,f(2) =
zu=p)+z(1+ B —wf'(2).

D3.f(2) = Dy (D53 (2)) ©)
where 1< yu<pB andneN ={1.2..}
We note that
D:.“f(z)=z+2[k(1+ 8- ;4)]na,,z* (10)

kal

Definition 5 (Oyekan, 2017b): fa > 0.1 < pu <
B, then

Unn(a.B.n.A.B) ={f
€A: [—D;'“I(Z)

Dg,f(2)
3 Dg,.f(2) _qll < 1+ Az
Dg.f(2) 1+Bz

—-1<B<A<lmeN:n
€ENy=RNu{0}km>n;z
€ Uy. (11)

Definition 5. Let V3 ,(a.B8.u. A, B).s € N, denote
the subclass of A consisting of functions f(z) which
satisfy the following condition:

f(2) € Van(a.B.1.A.B) & D°f(2)
€ Upnn(a.B.u.AB), (12)

(F1<B<A<limeN:neNyg:m>n: z
el).

2.0 MATERIAL AND METHODS

Basically the method to be used in this study is
subordination principle via the techniques used
earlier by (Srivastava and Attiya, 2004); (Attiya,
2005) and many others. We now state the lemmas
needed to prove our results.

Lemma 6 (Wilf, 1961): The sequence {c, }:_l isa
subordinating factor sequence if and only if

Re {1+2Zc,,z‘} >0,zel. 13)
kal

Lemma 7 (Oyekan, 2017b): A function f(z) of
the form (1) is in the class U, (. B, i1, 4, B) if

in(m, nk.a, B, u, A,B)la,,| <4-B

k=2
(14)
where

Q(m,nk.a,p. 1, 4.B)= {
[1+a(.l+|B| :)][(k(l+ﬂ-;1))"- (k(l'*ﬁ‘/‘))n]
+|Ble+ p- )" - alk(+ - w)]"| 3

(15)
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Lemma 8 (Ovekan, 2017b): A function '[z} of the

form (1} is in the class F’;’n{m B, ,{:,A,B:I if

ii’ SQ{m, mk.o. ﬁ,;:,A=E}|ak| <4-B

=l
(16)
where Ofm,n, k.o, B, i1, A, B) is defined by (14).

In view of Lemma (7) and Lemma (8), it 1s natural
to consider the classes L"“:I,, I:cx, B A B} and

Vilo. pu A.B):
U, ale. B.u,4,B)

[f e A: iﬂ{mm,k,a: B.u.A,.B)a;| <4 —3},

Eml
(17)
I;M:.n{a= ﬁ: AL, A,SJ

-
A Zm:.s’cfﬂl::m,n,k,a,,fa‘:;r,A,BHaﬂ <4-B }

Fml

(18)
where

Q2)=[t+ali+|B| 20+ p-u))"
forl =p=g,

—(2(1+p-u))"

(21)
and
A=A-B
(22)
The constant factor

Q(2)
2(0(2)+4 ]
(23)
in the subordination (19) cannot be replaced by a
larger one.
Proof. Let f(z)eU,

ZZ}:—E c:kz

fcx B A E]I and
= E . Then we have

Now since

ﬂ:}=[l+a{l+ |3] }][{k[l+,3—,u "

~(k(+p-u)" [+| BIE(1+ p-p)] " - 4[k(1+ p- )] "

These classes consist of functions f(z) € A whose
Tavlor-Maclaurin coefficients satisfy the
inequalities {14) and (16) respectively

Onur main results in this paper are some
subordination results associated with classes

U, (0. 8.0, 4,B) and V0, (o0, 5. 41, 4, B).

3.0 RESULTS AND DISCUSSION
Unless otherwise mentioned, we assume in the

remaining part of this paper that,
—l=B<dA=lLaz0fueRmelMne
Mypgm>n and z=U7.

Theorem 9. (A subordination result associated
with class U, , (o B, . 4. B) ).

Let flz) e Uy, (e B. 4. 4. B), then

0(2)

2[02)+a]

for every heX and

.
Re {f{z}] = — | %J
0 b

(20)

(f=h)zlnhlz) (zeU)

(19)

| Bl2(1+ p- )" - al2(1+ p- )

Q(2) 0(2)
E[fizl ][f=a :": 2{(12 ][.4 +Zatck
(24)

Hence, by Definition 3 the subordination (19) will
hold if,

{ Q@ I°
2[0f2)+a ],
(25)
15 a subordinating factor sequence with a, = 1.

In view of Lemma (), this is equivalent to the
following inequality:

4

1)) } -
RQ{1+25-1m [zEL_]
(26)
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Q(2)+AJ
R z S
e(f( ) > ( Q(Z) g
(33) 7
which is (20). )
is an increasing function of k(k = 2) and (m > To show the sharpness of the constant
n), we have Q) - h(z): z and
LS 0Q) \ 2[oR2)+a] 1-z
g 2| Qi2;+Al Az f(z)=fi(z) in (19) where
=Re e o A _2=.7.Q(2)—Az2
1o 0@ L $ o0t £i(e)=z Q(2) P))
[Q(2)+a ] [Q(2)+A 1 ' €2
28) Such that
Q(2)
1 Tapnal “Taerala Wl | ol s
o) I _ 2(Q@)+4) 1-z
[ q2 +A] [ Q(2)_’_A]r=l—r>0Hzi=r«<l), | N 35)
where we have also made use of the assertion (14) e et |Re(z)| = |z| L
of Lemma (7). show that
Next we show that . 29(2) Az? 1
min . zeUp=-=
Re(f(2) > ( ()+A] 210(2)+Ai
2(0Y (36)
Now
To do this, we take h— —4+Zk_2 a 20(2)—A2'2 ZQ(Z) 2
in (19) to get A 2(Q(2)+ A)
Q(2) z
- 29
ie. AGha i _o@-az] |zjo@)+|a]z[
. . T Rle@+a] T 2(0@2)+a)
Re > Re| ——|. 67
Qi2i+A 1-z Q(2)+A 1 ( )
z|=1).
S 0) 2(Q@)+a) 2 4l
Re(li))_%’ |z|<r, [€3)) This implies that
z0(2)-Az 1
“"g;‘g‘)’ ‘ [2(0.(2)+A)) =2
oQ)a Re(f(z))> - 32 . (38)
Therefore, -lSRe ZQ(Z)—_AZJ 51
2 2(02)+4)) " 2
39
Hence
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RCM sevt--1
2@)+a)) ° O

(40)

This completes the proof of Theorem (9)
Then

(1+a(1+|B]))2™ -

2") +|B(2™) — A(2")|

Taking = =1 and 1™ =1" =1 forall

m € N: n € Ny: m > n in Theorem (9) we have
the following:

Corollary 10. Let f(z) € U}, ,.(a.1.1,A.B).

2[(1 + a1 +1BD)(2™ - 27) + |B(2™) — A(2™)|] + (A—B)

< h(2)

forevery he K
and

Re(f(2)) >
_ (2[(1+a(1+|8|))(2"‘-2")+I8(2'")-A(2")|]+(4-B)
(L+a(L+1BD))(2m=27)4|B(2™)-A(2")]

u) 42)

The constant factor

(1+a(1+|B))) 2™ -2")+(B8(2™)-A(2")|
2[(1+a(L+B))(2™-2M)+]|B(2™)-a(2™)]]+(4-8)
43)
in the subordination (41) cannot be replaced by a
larger one.
Remark 2:

Re(£(2)) > —(
where

Q(2)=[1+al+ |8 20+ s-u )" -(20+ p- )" |+| B[2(1+ - )] * - 4[2(1+ - )]

and

A=A4A-B
@n
The constant factor

2°Q(2)

22° 02)+a]

(48)
in the subordination (44) cannot be replaced by a
larger one.

By suitably specializing the various parameters
mvolve in Theorem (9), we get corresponding
subordination results for certain known subclasses
and new one.

(f«m(2)

(ze l). (41)

The result in the Corollary 10 is the result obtained
by (Aoufet al., 2012 [Theorem 3])

The proof of the following subordination result is
similar to that of Theorem (9).

By making use of Lemma (8) in place of Lemma (7)
and let s = 0, we get the desired result. Therefore,
we omit the analogous details involved.

Theorem 11. (A subordination result associated
with the class Y (. 8. /"A’B)).

Let f(z)e Vo, (a B, A, B) then

W(fﬁh) (z)n h(z) (zeU)

(44)

2°0(2) + 4
2°0(2) ) (45)

(1)  When
B=-1,A=1m=1,n=0,8=u=1
and @ =0 (a2 0),wehave

Corrollary 12. Let f(z)e Uy,(0.1,1,1, -1).
Then

SURER ) (ev)
for every he K and
Rc(f( )> -, zelU.

The constant factor; cannot be replaced by a larger
one. This is due to (Sukhyit, 2000) and
( Selvaraj and Karthikeyan, 2008).
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(1)  When
B=0,A=1, m=1n=0, B=u=1
and @ =2 (a2 0), wehave

Corollary 13. Let f(z)e U(2,1L11, 0). Then | The constant factor % cannot be replaced by a

Re(f(z))> % zel.

9 larger one. This result was obtained by (Frasin,
g(f th)(z)n h(z) (z < U) 2006) and (Selvaraj and Karthikeyan, 2008 ).

for every he K and

(1) Taking 4=1-22 (0<A<1),8=u=1and B=—1 inTheorem (9), we correct the result
obtained by (Srivastava and Eker, 2008 [Theorem 1] );

(v) Taking A=1-22 (OS).<1),,8=y=l,m=n+l(nexo)and B = -1 in Theorem (9),
we obtain the result obtained by (Aouf et al., 2010 [Corollary 4] );

(v) Taking A=1-22 (0€£A<1),m=1,n=0,8=pu=1a=1and B=-1 inTheorem (9),
we obtain the result obtained by (Aouf et al, 2010 [Corollary 1] );

(vi) Taking A=1-22 (0<Ai<1l)ym=2,n=1 fB=pu=1 a=1ad B=-1inTheorem
(9), we obtain the result obtained by (Aouf et al,, 2010 [Corollary 2] );

(vi) Taking A =1,m=2,n=1 g=pu=1 and B =—1 in Theorem (9), we obtain the result obtained
by (Aouf et. al 2010 [Corollary 3] );

(vin) Taking 4 =1-22 (0<A<1),m=1,n=0, B=pu=1 and B = -1 in Theorem (9), we
obtain the obtained by (Frasin, 2006 [Corollary 2.2] );

(ix) Taking 4=1-24 (0<A<1l)m=2n=1 f=p=1and B=-1 inTheorem (9). we
obtain the result obtained by (Frasin, 2006 [Corollary 2.5]);

(x) Taking A=1-24 (0€Ai<1l),m=1,n=0, B=u=1 a=0and B =—1 in Theorem (9),
we obtain the result obtained by (Frasin, 2006 [Corollary 2.3] );

(xt) Taking 4=1-24 (0€4i<l)m=2,n=0 B=u=1 a=0ad B=-1 inTheorem
(9), we obtain the result obtained by (Frasin, 2006 [Corollary 2.6] );

(xu1) Taking A =1, m=2,n=1 B8=u=1 a=0ad B=-1 inTheorem (9), we obtain the result
obtained by (Frasin, 2006 [ Corollary 2.7] );

Also, we observe that the classes S* ( A, B) and X* ( A, B), defined as follows yield results which are
special cases of our main result:

Un.o(os L1 4, B)=S.(A,B)={fEA:széZT)7t ::—;ﬁ} 49

(-1€B<A4<1;zel)

. g _ ) zf"(z) 1+ A4z
U,(0.1,1, 4, B)=K (A,B)-{fe 41+ ) n 1+Bz}, (50)

(-1€B<4%1;zel)

(Janowski, 1973) and (Padmanabhan and Ganesan, 1988).
Furthermore we note that

Unn(0.1.1, 4, B) = Ulm,n; 4,B) = {f c a1, 277G l*“‘z}, 61

b3
D"f(z) 1+Bz
(-1<sB<A<1:meN;neN; m>n)
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Following from (49), (500 and (51) we state the
following subordination results:
(1) Puttingag =n=0, f=pu=m=1
and 1M =1"=1 forall meM: n€
M
m = n in Theorem 9 , we have

Corollary 14.Let f(z)< 5*(4.B). Then

3 Il +|;;|fi|:-ﬁd—f3” (f*h)iz)m hiz) (zeU)

(32)

for every A=K and
_1+]2B-4+(4-B)

el
1+[2B-4

Re(f(z)) >

- e

The constant factor
1+[2B - 4
21t +2B- 4+ (4-B)|
mn the subordination (32) cannot be replaced by a
larger one.

(1)

Putting ¢ =0, m=1 f=u=2 and
m =1 in Theorem 9 we have
Corollary 15. Let f(z) e K*(4,B). Then
1+[2B- 4
2+22B-4+(4

"y (f*h)(z)m hiz) (zeU)

(33)

for every A=K and

Re(/(2)) > - 2+[2B - 4|+(4-B)

2(1 +[28-4))
The constant factor
14|28 - 4]
2 +2[2B- 4+ (4-B)
in the subordination (53) cannot be replaced by a
larger one.

(1)

zell.

=

Putting o = {0, in Theorem 9 with
f=p=1and 1™ =1" =1 for all
meM:; n €My m>n wehave

Corollary 16. Let f(z)= K*(4,B). Then

62

[2™ =27+ |B(2™) — A(2")|
[2m —2n] + [B(2™) — A(27)| + (A — B)
« hi(z) = hiz).
(zel)  (54)

(f

for every he K and

Re(f(z))
[2™ —2"] + |B(2™) — A(2")| + (4 — B)

7 [2m =2n] + |B(2™) — A(2™)|
e l/
The constant factor

[2™ =2"] +|B(2™) — A(2")]
27— 27 + [B(2™) — A2™)] + (A - B)
in the subordination {54) cannot be replaced by a
larger one.

CONCLUSION

In this work, we defined two subclasses of analytic
functions and derive subordination results for them.
Tt was discovered that some earlier known results
are special cases of our results. Thus our results
extend the earlier ones. Furthermore, some of our
results are new
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